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Using computational modeling, we introduce patches of self-oscillating gels undergoing the Belousov-
Zhabotinsky �BZ� reaction into a nonreactive polymer network and thereby demonstrate how these BZ gels can
be harnessed to impart remarkable functionality to the entire system. By first focusing on two adjacent patches
of BZ gels, we show that the patches’ oscillations can become synchronized in phase or out of phase, with the
oscillation frequency depending on the synchronization mode and the spatial separation between these do-
mains. We then apply these results to an array of five adjacent BZ patches and by varying the distance between
these pieces, we dramatically alter the dynamical behavior of the patterned gel. For example, the sample can be
made to exhibit a unidirectional traveling wave or display a concerted expansion and contraction, properties
that are valuable for creating gel-based devices, such as micropumps and microactuators. The findings point to
a “modular” design approach, which can impart different functionality simply by arranging identical pieces of
BZ gels into distinct spatial arrangements within a polymer matrix.
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I. INTRODUCTION

One of the grand challenges in designing flexible robots
or “soft machines” is to create a system that can operate
under its own, internally generated power, similar to a living
system �1,2�. Recently, researchers have made significant
progress towards this goal by fabricating a polymer gel that
undergoes spontaneous, periodic oscillations �2,3�, which are
driven by the Belousov-Zhabotinsky �BZ� reaction �4�. The
gel will continue to undergo a rhythmic swelling and
deswelling until the reagents in the BZ reaction are con-
sumed; the system can, however, be “refueled” by simply
adding more reagents to the solvent. The unique self-
oscillatory behavior of the BZ gels is due to a ruthenium
catalyst, which is grafted to the backbone of the polymers
�2,3�. The metal catalyst ions undergo a periodic reduction
and oxidation and this redox reaction drives the rhythmic
expansion and contraction of the polymer. By exploiting this
form of chemomechanical transduction, researchers could
design various self-propelled BZ gels �1,5,6�.

Recent theoretical and computational modeling of BZ
gels has revealed a number of distinctive effects of the ch-
emomechanical coupling on the dynamical behavior of the
polymer network �5–8�. For example, computer simulations
of the BZ gel in two dimensions �2D� uncovered a rich va-
riety of dynamic patterns and distinctive shape changes that
depend on the aspect ratio of the sample, and exist solely due
to coupling between the chemical and mechanical degrees of
freedom �7�. Anchoring the BZ gel to a solid wall was shown
to yield different dynamic patterns depending on whether the
gel was expanded or contracted near the wall, and on the
sample’s dimensions �5�. Additionally, it was found that ap-
plying a mechanical pressure on a sample could induce os-
cillations in an initially nonoscillatory system or promote
changes in existing oscillatory patterns �6�. Finally, research-
ers isolated scenarios where the traveling waves of swelling

induce a microscopic motion of the entire sample �5,6�.
In the previous studies, the gels were assumed to contain

a uniform distribution of the anchored metal catalyst. In this
paper, we examine how chemical patterning can be har-
nessed to expand the functionality of the BZ gels. In particu-
lar, we use computational modeling to probe the behavior of
BZ gels where only finite patches in the sample contain the
Ru catalyst �BZ patches�. As we show below, a pair of iso-
lated BZ patches exhibits two modes of synchronization of
the chemomechanical oscillations, with the frequency of
these oscillations being strongly dependent on the interpatch
distance. We then demonstrate that this finding could be uti-
lized for creating organizing centers, or pacemakers, within
heterogeneous gels that consist of many identical BZ
patches. Thus, this kind of a spatial heterogeneity leads not
only to unique pattern formation, but also opens up a method
of tailoring the gels for specific applications.

II. METHODOLOGY

A. Model description

We start by considering the system shown schematically
in Fig. 1�a�: two square patches of BZ gels �which contain
the anchored catalyst� are placed a distance �x apart within a
rectangular layer of swollen, nonreactive gel. To describe the
dynamics within the BZ gel, we turn to our modified version
�5,8� of the Oregonator model �9�, which captures the reac-
tion in solution in terms of the concentrations of the key
reaction intermediate �the activator� u, and the oxidized
metal-ion catalyst v. Our modified model �5,8� accounts for
the dependence of the BZ reaction rates on the volume frac-
tion of polymer �, yielding the following dimensionless
reaction-diffusion equations for u and v, and the continuity
equation for �:

�u

�t
= − � · �uv�s�� − � · j�u� + F�u,v,�� , �1�
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�v
�t

= − � · �vv�p�� + �G�u,v,�� , �2�

��

�t
= − � · ��v�p�� . �3�

Here, v�s� and v�p� are the respective solvent and polymer
velocities, j�u� is the diffusion flux of the dissolved activator,
and F and G are the BZ reaction rate functions. Equation �2�
only applies to the BZ patches, where the catalyst is chemi-
cally bonded to the polymer chains. Within these patches, the
reaction rates F and G are �5,8�

F�u,v,�� = �1 − ��2u − u2 − �1 − ��fv
u − q�1 − ��2

u + q�1 − ��2 , �4�

G�u,v,�� = �1 − ��2u − �1 − ��v . �5�

The stoichiometric factor f and the dimensionless parameters
� and q have the same meaning as in the original Oregonator
�9�. Outside the BZ patches, u decays through a second-order
reaction, so F�u ,v ,��=−u2 in the nonreactive regions. Aside
from incorporating the effects of the polymer, a similar ap-
proach has been used to model the BZ reaction in chemically
patterned media �10�.

We neglect the total velocity of the polymer-solvent sys-
tem by assuming, for simplicity, that the gel dynamics pro-
ceeds solely due to polymer-solvent interdiffusion, and set
�v�p�+ �1−��v�s�=0. In the course of interdiffusion, the
forces that act on the deformed gel are balanced by the fric-
tional drag due to the motion of the solvent �11,12�. Then,
the polymer velocity can be calculated as �12� v�p�=�0�1
−���� /�0�−3/2� · �̂, where �̂ and �0 are the respective di-
mensionless stress tensor and kinetic coefficient, and the fac-

FIG. 1. Synchronization
modes in the patterned BZ gel. �a�
Schematics of the system in the
nondeformed state; the black
squares denote the catalyst
patches 1 and 2. �b� The initial
conditions corresponding to ��
=0. �c� The in-phase synchroniza-
tion. �d� The initial conditions cor-
responding to ��=�. �e� The out-
of-phase synchronization. Here
and in all other figures, the patch
size is 5L0 and the patch-to-
boundary distance is 10L0; the
sample swells freely through the
outer boundaries; u=0 outside the
sample. The spatiotemporal be-
havior of u, v, and � was obtained
at �x=5L0 and �*=0.105, and
shown along the cross section a-b.
The gel dynamics is shown during
the period of time of 100T0. The
lattice spacing in the simulations
is 1 /2L0. The symbols in �b� and
�d� present the values of u, v, and
� at the center of elements; the
symbols are connected by dotted
lines as a guide for the eye.

VICTOR V. YASHIN AND ANNA C. BALAZS PHYSICAL REVIEW E 77, 046210 �2008�

046210-2



tor �� /�0�−3/2 is due to the �-dependent polymer-solvent
friction.

To determine the properties of the system �i.e., solve the
set of equations in �1�–�3��, we must be able to calculate the
stresses in the system. The stresses in the polymer network
depend on the local deformations, which are described by the

Finger strain tensor B̂ �13�. The stress-strain relationship can
be established from the energy density of the deformed gel

U. The energy density depends on the strain tensor B̂ only
through it’s invariants Ii, i=1,2 ,3. Given that the function
U�I1 , I2 , I3� is specified, the stress tensor �̂ can be calculated
as �13�

�̂ = 2I3
−1/2�w2I2 + w3I3�Î + 2I3

−1/2w1B̂ − 2I3
1/2w2B̂−1, �6�

where wi= �� /�Ii�U�I1 , I2 , I3�, i=1,2 ,3, and Î is the unit ten-
sor. In our calculations, the quantity U is taken to be the sum
of the elastic energy of the crosslinked polymer chains, the
polymer-solvent interaction energy, and the energy of
catalyst-solvent interactions �5,8� as follows:

U = Uel�I1,I3� + UFH�I3� + Ucpl�I3� . �7�

The corresponding strain invariants are I1=tr B̂ and I3

=det B̂. To calculate the elastic energy, we utilize the Flory
model of rubber elasticity

Uel =
c0

2
�I1 − 3 − ln I3

1/2� , �8�

where c0 is the dimensionless crosslink density of the gel.
The polymer-solvent interactions are described according to
the Flory-Huggins model

UFH = I3
1/2��1 − ��ln�1 − �� + �FH�����1 − ��� , �9�

where �FH��� is the �-dependent polymer-solvent interac-
tion parameter. The coupling between the chemical and me-
chanical degrees of freedom is introduced by taking the
catalyst-solvent interaction energy to be of the following
form �5,8�:

Ucpl = − I3
1/2�*v�1 − �� . �10�

Here, �*	0 is the interaction parameter that describes the
hydrating effect of the oxidized metal-ion catalyst. The factor
I3

1/2 appears in Eqs. �9� and �10� because the energy density is
defined with respect to a unit volume in the undeformed
state. We note that the local volume fraction of polymer in
the deformed gel � is related to the volume fraction of poly-
mer in the undeformed state �0, as �=�0I3

−1/2. Finally, sub-
stituting Eqs. �7�–�10� into Eq. �6� gives the following con-
stitutive equation �5,8�:

�̂ = − ��FH��� + �*v� + c0��2�0�−1�Î + c0�0
−1�B̂ ,

�11�

where

�FH��� = − �� + ln�1 − �� + �����2� �12�

is the dimensionless Flory-Huggins osmotic pressure. The
interaction parameter ���� in Eq. �12� coincides with the

Flory-Huggins interaction parameter �FH in Eq. �9� only if
the polymer-solvent interactions do not depend on the vol-
ume fraction of polymer �.

B. Numerical simulations

Equations �1�–�3� were solved numerically using a lattice-
based computational technique, namely, the gel lattice spring
model �5,7�. These simulations are carried out in two dimen-
sions and thus, the height of the film 
� is assumed to re-
main constant. For the BZ reaction parameters �see Eqs. �2�
and �4��, we set �=0.354, q=9.52�10−5, and f =0.7. The
polymer gel was characterized by �0=0.139, c0=1.3�10−3,
�0=100, and 
�=1.1. The polymer- and catalyst-solvent in-
teractions were set to ����=0.338+0.518� and �*=0.105,
respectively. These parameter values were based, where pos-
sible, on available experimental data �5�; f and �* were
treated as the adjustable parameters. The units of time and
length used in our simulations correspond to T0�1 s and
L0�40 �m, respectively �5�.

To clarify the terminology used below, the BZ patch con-
tains the anchored catalyst and this patch can be responsive
��*	0� or nonresponsive ��*=0�. The bulk of the gel in the
ensuing discussion �see Fig. 1� is nonreactive, i.e., no cata-
lyst is anchored to the chains in this region. At the onset, we
considered the case where a single BZ patch of the respon-
sive gel ��*=0.105� is surrounded by the nonreactive gel
�dimensions of both are given below�. We found that the
responsive patch exhibits oscillations for values of the stoi-
chiometric factor f in the range from 0.6590.001 to
1.250.02. We then considered a similar sized piece of the
nonresponsive gel ��*=0� in the nonreactive matrix and
found that BZ oscillations existed in the range from
0.6830.001 to 1.250.02, i.e., the oscillatory domain for
the nonresponsive gel was smaller than in the responsive gel.

Using the above approach, we studied the synchronization
of the chemomechanical oscillations of two square-shaped
BZ gel patches, which were placed within the nonreactive
gel, as shown in Fig. 1�a�. The state of synchronization was
characterized by the phase difference �� between the oscil-
lations of v �concentration of oxidized catalyst� in the center
of the two patches. The size of the BZ patches was 5L0 and
the patch-to-boundary distance was 10L0 �see Fig. 1�a��. The
lattice spacing in the simulations was 1 /2L0. The interpatch
distance �x was varied from 1L0 to 10L0. The latter dimen-
sions correspond to the undeformed state of the gel. The
distance from the BZ patch to the edge of the sample was
chosen to be two times greater than the size of the patch in
order to minimize the effect of the boundary conditions on
the gel dynamics within and around the BZ patches. For the
boundary conditions, we assumed the gel sample to swell
freely in the lateral direction through the outer sample
boundaries, and the concentration of the activator was set to
u=0 outside the sample.

All simulations were initiated from a gel that was uni-
formly swollen in the lateral directions. In this initial state,
the degree of lateral swelling was set equal to that of a non-
reactive gel at equilibrium; the equilibrium degree of lateral
swelling of the nonreactive gel is approximately 1.3 for the
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given values of the model parameters. The initial spatial dis-
tributions of the concentrations of u and v were obtained
from a simulation on a single, nonresponsive BZ patch ��*

=0�, which was located in the center of a larger square of
nonreactive matrix. �The size of the square BZ patch and the
distance of this patch from the edge of the sample are the
same as noted above.� The resulting concentration fields for
u and v were utilized as the initial distributions in the two BZ
patches in the rectangular sample �Fig. 1�a��. Additionally,
the spatial patterns of u and v centered on the different
patches were selected so as to exhibit a phase shift, i.e., they
corresponded to different positions on the cycle of an indi-
vidual chemical oscillator. The initial state of patch 1 was
typically chosen at a position of maximum of v in the center
of the patch. We varied the initial phase difference �� from
0 to 7� /8 with a step of � /8. Figures 1�b� and 1�d� show the
profiles of u, v, and � along the central cross section of the
sample at ��=0 and �, respectively.

After assigning the initial conditions, the system dynam-
ics was simulated for a time of 3000T0, which is approxi-
mately equal to 100 cycles of the BZ reaction. This period of
time was sufficiently long to establish synchronized regimes
of oscillation for �x�10. To facilitate transitions between
different synchronization regimes, the system dynamics was
then perturbed five consecutive times by applying a random
noise to the values of u and v. After each perturbation, the
simulation was run for an additional 1000 units of time.

III. RESULTS AND DISCUSSION

Due to the redox reaction of the metal catalyst, the two
patches of responsive BZ gels shown in Fig. 1 exhibit peri-
odic oscillations; furthermore, these oscillating patches inter-
act, or effectively “communicate,” through the concentration
field u and the deformation of the gel around the reactive
regions. �In other words, the redox reaction within the two
patches is correlated because the activator u diffuses out of
one patch and into the other. In this manner, the diffusing
activator effectively controls the interaction between the
patches.� Due to this interaction, the chemomechanical oscil-
lations in the patches become synchronized �14�. The simu-
lations reveal two major modes of synchronization, namely,
in-phase and out-of-phase synchronization. These respective
modes are displayed in Figs. 1�c� and 1�e�, which show the
temporal behavior of u, v, and � along the central cross
section of the gel. In a synchronized state, the phase differ-
ence between the two oscillators, ��, is locked to a specific
constant value. For the in-phase synchronization �Fig. 1�c��,
��=0, while for the out-of-phase mode �Fig. 1�e��, the phase
difference is about ��=�.

The two modes of synchronization were found to coexist
in a wide range of the interpatch distances �x �see the dis-
cussion below�. Hence, the mode selection depended upon
the initial conditions chosen for the simulations. To achieve
the in-phase synchronization illustrated in Fig. 1�c�, the
simulations were initiated from conditions that correspond to
the same phase of oscillation in the individual BZ oscillators
as shown in Fig. 1�b�. The in-phase mode was also observed
if the spatially uniform distributions u and v were used for

the initial conditions. The out-of-phase regime shown in Fig.
1�e� was established at the nonequal initial phases �see Fig.
1�d��. It is worth noting that in experimental studies, the light
sensitivity of the BZ reaction could be utilized for manipu-
lating the initial conditions �16–18�.

We note that for two patches at �x=5, the synchronized
oscillations were observed in approximately the same range
of values of the stoichiometric factor f as where a single BZ
patch exhibited the oscillatory regime, i.e., 0.659� f �1.25
at �*=0.105 and 0.683� f �1.25 at �*=0.

The periodic swelling of the polymer in the BZ patches
�the bright spots in the density plots of � in Figs. 1�c� and
1�e�� proceeds through the repetitive uptake and release of
solvent from the neighboring areas, causing a distortion of
the polymer network that borders these patches. This can
clearly be seen in Figs. 2�a� and 2�b�, which display the
relative variation of � along the central cross section of the
sample for both synchronization modes. The variation �� in
Figs. 2�a� and 2�b� is defined as ��=�−�eq, where �eq is
the equilibrium volume fraction of polymer in the nonre-
sponsive gel, i.e., at �*=0. The figures also show that the
distributions of � within the gel are different for these two
modes. This difference can be further characterized by the
variation in the energy density of the gel due to the deforma-
tions caused by the BZ reaction. The energy density is de-
fined as Ugel=Uel+UFH �see Eqs. �8� and �9��. It is conve-
nient to calculate the value �Ugel= Ūgel−Ugel

�eq�, where Ūgel is
the total energy of the gel per unit volume in the nonde-
formed state, and Ugel

�eq� is the equilibrium value of Ugel in the
nonresponsive gel ��*=0�. Figure 2�c� shows how �Ugel var-
ies with time and reveals that the amplitude of its variations
is greater for the in-phase than for the out-of-phase mode.
The solid and dashed lines in Figs. 2�a� and 2�b� correspond
to the maximal and minimal values of �Ugel, respectively. As
can be seen from these figures, � exhibits more significant
spatial variations for the in-phase mode than for the out-of-
phase mode.

We now systematically varied the distance between the
patches, �x, while fixing �*=0.105 and found that the syn-
chronization between the two oscillators depends critically
on �x. Figure 3�a� shows that only the in-phase mode was
found for �x�3, whereas both the in-phase and out-of-
phase modes were observed for �x�3. Furthermore, the fre-
quency of oscillation � in a synchronized state also depends
on �x, and this dependence is remarkably different for the
two modes. In particular, � in the out-of-phase mode in-
creases as the BZ patches are placed closer together until this
mode ceases to exist at �x�3. In contrast, � in the in-phase
mode decreases with a decrease in �x. Moreover, there exists
a range of the interpatch distances �3��x�6 in Fig. 3�a��,
where the out-of-phase patches oscillate with a higher fre-
quency than the patches exhibiting the in-phase mode.

We anticipate that in the limit that �x approaches zero,
the frequency of the oscillations in the in-phase mode should
approach the frequency of oscillation in a single patch, �0.
To obtain accurate numerical results in this limit, however,
the lattice spacing should be taken to be much smaller than
in the present study.

As can be seen from Fig. 3�b�, the behavior of the chemo-
responsive gel ��*=0.105� is quite distinct from the nonre-
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sponsive case ��*=0�, where the polymer does not deform
due to the chemical reaction and the BZ patches only interact
through the chemical degrees of freedom. In particular, Fig.
3�b� shows that for 1��x�3, the nonresponsive gel is in
oscillation death regime �19�. The absence of the oscillation
death at �*=0.105 allows us to conclude that the chemome-

chanical coupling has a stabilizing effect on the synchronized
oscillations.

The in- and out-of-phase regimes of synchronization and
the oscillation death were previously observed in experimen-
tal studies of two coupled continuously stirred tank reactor
�CSTR� systems undergoing the oscillatory BZ reaction �19�.
Unlike the behavior shown in Fig. 3, the frequency of oscil-
lations in the out-of-phase regime was reported to be lower
than the frequency of the uncoupled oscillations �19�. Fur-
thermore, the frequency of the out-of-phase oscillations de-
creased with an increase in the coupling strength until the
oscillation death occurred, and an asymmetric steady state
was established in the system �19�. The difference between
the behavior reported in Ref. �19� and shown in Fig. 3 could
be attributed to the difference in the nature of coupling.
Namely, the BZ oscillations in the two CSTRs interacted
through the concentration of oxidized catalyst v �19�,
whereas the interaction is controlled by the activator u in the
system considered here.

As can be seen from Fig. 3, for both responsive and non-
responsive heterogeneous gels, the frequency of oscillation
was found to be remarkably different in the in-phase and
out-of-phase regimes of synchronization at �x�7. This im-
plies that a theoretical analysis of the synchronization based
on the phase reduction technique �15,20� is of a limited ap-
plicability to the system under consideration. This theoretical
approach assumes that the oscillators are coupled so weakly
that the interaction has a negligible effect on the frequency of
oscillation. As evident from Fig. 3, this assumption is valid
only if the patches are placed sufficiently far from each other.

FIG. 2. Distortion of the polymer network in the patterned BZ
gel exhibiting the �a� in-phase and �b� out-of-phase synchronization
as revealed by the variation in the volume fraction of polymer ��
along the central horizontal cross section at �x=5L0 and �*

=0.105; �eq corresponds to �*=0. �c� The temporal variation of the
energy of the gel, �Ugel, which is calculated per unit volume of gel
in the nondeformed state, and includes the elastic energy of the
crosslinked polymer chains and the energy of the polymer-solvent
interactions due to the Flory-Huggins equation �5,8�. The solid and
dashed lines in �a� and �b� correspond to the profiles of �� at the
respective maximal and minimal values of �Ugel, which are indi-
cated by dots in �c�.

FIG. 3. The frequency of oscillations � of the in-phase and
out-of-phase synchronization modes as a function of the interpatch
separation �x. �a� Responsive gel. �b� Nonresponsive gel. �0 is the
frequency of oscillation within an isolated patch. The shaded area in
�b� indicates the domain of the oscillation death regime.
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We note that the frequency of oscillations depends on the
spatial-temporal behavior of the concentration u between the
patches. At sufficiently small �x, the in-phase and out-of-
phase regimes exhibit quite different distributions of u in the
interpatch space.

The dependencies shown in Fig. 3�a� provide valuable
guidelines for designing patterned BZ gels that exhibit the
desired dynamic behavior. To illustrate the utility of these
design rules, we consider five catalytic patches that are ar-
ranged in a linear array. In simulations of the gels having five
BZ patches, the lattice spacing was L0, and the initial con-
centrations u and v were u /�=v /�=10−3 �v=0 outside the
patches�. The evolution of the system was simulated for a
period of 6000T0 to ensure that the developed dynamical
pattern was stable.

First, we focus on situations where all the patches are
placed equidistantly, with �x=2 and �x=4, as shown, re-
spectively, in Figs. 4�a� and 4�b�. For the two-patch case at
�x=2, only the in-phase synchronization is supported by the
system �see Fig. 3�a��. The simulations reveal that the corre-
sponding array of five patches also exhibits the in-phase syn-
chronization �see Fig. 4�d��. �The pattern is slightly bent be-
cause the end patches interact only with one neighboring
patch, and consequently, they exhibit a slightly higher fre-
quency than the internal patches.�

For �x=4, both the in- and out-of-phase modes of pair-
wise synchronization exist, but the out-of-phase mode has a
higher frequency than the in-phase mode �Fig. 3�a��. It is
well known that in an ensemble of coupled chemical oscil-
lators, the dynamical mode having the highest frequency al-
ways dominates �17,20–22�. It is evident from the dynamical
pattern in Fig. 4�e� that at �x=4, the neighboring patches do
indeed exhibit the out-of-phase synchronization.

Finally, we consider an array of the catalyst patches where
the distance between the two patches at the right end is �x

=4, while all other reactive domains are spaced at �x=2
�Fig. 4�c��. As anticipated from the findings in Fig. 3�a�, the
pair of patches at �x=4 oscillates out of phase, with a fre-
quency that is greater than that of the in-phase mode at �x
=2. The simulations show that this pair forms a pacemaker
and thereby generates a chemical wave that propagates to the
left �see Fig. 4�f��. This wave can be harnessed to create a
micropump, which drives dissolved species from one end of
the sample to another.

The responsiveness of the gel to the BZ reaction is crucial
for the existence of the dynamical behavior shown in Figs.
4�d�–4�f�. As seen in Figs. 4�g�–4�i�, a nonresponsive poly-
mer matrix ��*=0� will not produce the rich dynamics dis-
cussed above.

It is worth noting that after the dynamical patterns in Figs.
4�d�–4�i� were developed, they were sustained for a long
time of about 5000T0 �� corresponding to 1.5 h�. The sta-
bility of the patterns was then tested by perturbing the con-
centrations u and v with a random noise �see Sec. II B�. The
perturbation was applied three times within the interval of
3000T0. The stability of the highly synchronized dynamics in
the arrays of the BZ patches �Figs. 4�a�–4�c�� was found to
depend on the responsiveness of the gel. For example, at
�*=0.105, the dynamic patterns in Figs. 4�d� and 4�f� exhib-
ited no effect of the noise. In contrast, at �*=0, the pertur-
bations changed the behavior shown in Figs. 4�g� and 4�i� to
induce a unidirectional chemical wave.

IV. CONCLUSIONS

In summary, we undertook the first studies to determine
how the compartmentalization of BZ gels in a nonresponsive
polymer matrix affects the dynamical behavior of the system.
The results point to a “modular” design approach, which can
impart the desired functionality to the material. In particular,
identical pieces of BZ gel form the crucial components and it
is the arrangement of these pieces that determines and pro-
vides the desired performance. For example, the out-of-phase
pattern shown in Fig. 4�e� can be utilized to effectively
double the operating frequency in a BZ gel-based coating
that is used to sense features of the underlying surface �23�.
In contrast, the wavelike swelling and deswelling motion
within the responsive gel shown in Fig. 4�f� can be poten-
tially used to pump reagents or fluid through the system,
while the concerted behavior seen in Fig. 4�d� might be valu-
able for fabricating a microactuator. In future studies, we will
extend this concept by patterning the sample with rectangu-
lar strips and by combining square patches with these rect-
angular pieces. This approach can be viewed as inscribing a
Lego set within a polymer gel and using these inscribed
components to build the desired device. The computational
studies described herein provide the necessary guidelines for
assembling the components into the appropriate pattern to
yield the specified function.
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FIG. 4. Dynamical patterns in the heterogeneous gel having five
catalyst patches arranged in a linear array: the effect of the inter-
patch spacing. ��a�–�c�� Schematics of the systems. ��d�–�i�� The
spatiotemporal behavior of u along the central horizontal cross sec-
tion of the sample for ��d�–�f�� responsive and �g�–�i� nonresponsive
gels. The lattice spacing in the simulations is L0. The gel dynamics
is shown during a period of time of 100T0. Grayscale bar: umin

=8.42�10−5, umax=0.357 at �*=0.105; umin=8.22�10−5, umax

=0.268 at �*=0.
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